附件: 2020 年全国植物生物学大会报告专家及题目

专题	报告人	工作单位	报告题目
	李家洋	中科院遗传与发育生物学研究所	待定
	万建民	中国农业科学院作物研究所	稻米品质的遗传改良
	邓兴旺	北京大学	 待定
	张立新	河南大学	待定
	葛 颂	中科院植物研究所	野生稻物种形成的式样和机制
	何祖华	中科院分子植物科学卓越创新中心	水稻 NLR 免疫受体信号途径与亚种间分化
大会报告	王源超	南京农业大学	 待定
	郭红卫	南方科技大学	植物 22-nt siRNA 的作用机制及生物学功能
	程时锋	中国农业科学院深圳农业基因组研究所	待定
	Rosa	中科院上海植物逆境生物学研究中心	Plasma membrane-to-chloroplast communication:
	Lozano-		learning from viruses
	Duran		
	叶 凯	西安交通大学	罂粟科基因组演化及吗啡合成通路的形成
	张献龙	华中农业大学	比较基因组剖析棉花转座子扩增与染色质三维结构重组之间的进化关系
植物基因组学	樊龙江	浙江大学	The genomes of the allohexaploid Echinochloa weeds
	贾继增	中国农科院作物科学研究所	转座子(TE) 促进小麦亚基因组基因分化

	汪 海	中国农业大学	人工智能辅助育种
	万向元	北京科技大学	玉米雄性不育新基因批量化挖掘与分子调控机理研究
	戚益军	清华大学	Dihydrouridine modification regulates 5' tRNA-
			derived small RNA biogenesis and anti-fungal defense
			in <i>Arabidopsis</i>
	郑丙莲	复旦大学	Coordination of heterochromatic silencing and sperm
			cell maturation in Arabidopsis
表观遗传& 非编码 RNA	贾桂芳	北京大学	表观转录组学对植物生长发育功能调控研究
	翟继先	南方科技大学	Widespread post-transcriptional splicing as a layer
			of gene regulation in plants
	方晓峰	清华大学	RNA processing physically links to epigenetic
			silencing
	夏瑞	华南农业大学	植物相位 siRNAs(phasiRNAs)
	孙前文	清华大学	Intragenic tRNA-promoted R-loops orchestrate
			transcription collisions for plant oxidative stress
			responses
	贺岩	中国农业大学	玉米 DDM1 基因参与 RdDM 途径的机制解析

	丁勇	中国科技大学	PRC2 recruitment and H3K27me3 deposition at FLC
			require FCA binding of COOLAIR
	翁羽翔	中科院物理研究所	由高等植物光系统 II 捕光天线蛋白质动态开关实现高效捕
			光和光保护功能切换所带来的启示
光合作用	秦晓春	济南大学	光合作用光系统 I 结构及其与光环境适应研究进展
元合作用 	马为民	上海师范大学	光合 NDH-1 结构与功能机制研究
	彭新湘	华南农业大学	Can increasing photosynthesis boost crop yields?
	张纯喜	中科院化学研究所	光合作用放氧中心的仿生模拟
	罗杰	海南大学	待定
	黄胜雄	中科院昆明植物研究所	茄科托品烷生物碱合成途径解析及植物 III 型聚酮合酶的
植物代谢			功能多样性
	张阳	四川大学	待定
	黄金泉	中科院分子植物科学卓越创新中心	棉花中新型代谢酶的功能研究
	王勇	中科院分子植物科学卓越创新中心	糖基化天然产物的合成生物学研究
	孔照胜	中科院微生物研究所	Transfer Cells mediate Nitrate Uptake to Control
			Root Nodule Symbiosis

	晁代印	中科院分子植物科学卓越创新中心	A new cargo trafficking pathway mediates tonoplast
			localization of phytochelatin transporters ABCC1
植物营养与环境			and ABCC2
但物音乔与外境	毛传澡	浙江大学	植物磷吸收转运的分子调控
	陈志长	福建农林大学	水稻叶绿体镁的高效利用机制
	黄朝锋	中科院上海植物逆境生物学研究中心	Regulation of aluminum-resistance in Arabidopsis
			involves the SUMOylation of the zinc finger
			transcription factor STOP1
	雷明光	中科院上海植物逆境生物学研究中心	Inositol Pyrophosphate InsP8 Acts as an
			Intracellular Phosphate Signal in Arabidopsis
	瞿礼嘉	北京大学	Pollen tube-pistil interaction
	段巧红	山东农业大学	FERONIA 受体激酶调控的花粉与雌蕊相互作用
	李红菊	中科院遗传与发育生物学研究所	Central cell in flowering plants: specification,
植物生殖发育			signaling and evolution
	杨仲南	上海师范大学	植物光温敏育性恢复的机制
	陈化榜	中科院遗传与发育生物学研究所	玉米杂交不亲和分子遗传机制研究进展
	梁婉琪	上海交通大学	待定

	郭晶心	华南农业大学	水稻抽穗光敏性的分子遗传调控机制
	赵忠	中国科技大学	WUSCHEL triggers innate antiviral immunity in plant
			stem cell
	刘宏涛	中科院分子植物科学卓越创新中心	Brassinosteroid-Activated BRI1-EMS-SUPPRESSOR 1
			Inhibits Flavonoid Biosynthesis and Coordinates
植物细胞信号			Growth and UV-B Stress Responses in Plants
	黎家	兰州大学	RGF1-RGI1, a peptide-receptor complex regulates
			root meristem development
	林文慧	上海交通大学	激素信号调控拟南芥胚珠发生和种子数量的机制
	侯兴亮	中科院华南植物园	赤霉素调控植物生殖发育的分子机理
	王鹏程	中科院上海植物逆境生物学研究中心	RAF-SnRK2 kinase cascade in osmotic stress and ABA
植物非生物逆境			signaling
	李继刚	中国农业大学	光调控植物逆境响应的分子机制
	白明义	山东大学	Brassinosteroids regulate the movement and
			development of stomata through controlling the
			starch metabolism
	谢旗	中科院遗传与发育生物学研究所	Ubiquitination in plant salt signaling

	徐云远	中科院植物研究所	mRNA 的 m5C 修饰增强水稻高温适应性
	Alboto	中科院上海植物逆境生物学研究中心	Deciphering the molecular interface between plants
	Macho		and the bacterial pathogen Ralstonia solanacearum:
			beyond activation and suppression of immunity
	董莎萌	南京农业大学	一种胞外丝氨酸蛋白酶参与植物免疫的新模式
植物生物互作	王伟	中科院遗传与发育生物学研究所	An Arabidopsis secondary metabolite directly
			targets expression of the bacterial Type III
			Secretion System to inhibit bacterial virulence
	李剑峰	中山大学	Crosstalk between Pattern-Triggered Immune Pathways
			in Plants
	辛秀芳	中科院分子植物科学卓越创新中心	A united view of plant immunity architecture
			Root innate immune responses at single cellular
	周峰	中科院分子植物科学卓越创新中心	resolution
	陈春丽	华中农业大学	DNA 损伤引发小立碗藓分化体细胞重编程形成干细胞
			Salicylic Acid regulates PIN2 auxin transporter
			hyper-clustering and root gravitropic growth via
青年论坛	柯美玉	福建农林大学	Remorin-dependent lipid nanodomain organization in

		Arabidopsis thaliana
		小麦环状 RNA 调控 psb28 基因表达参与光合机构干旱应答
汪月霞	河南农业大学	以及外源 ALA 的调节作用研究
王文达	中科院植物研究所	硅藻光系统和捕光天线的结构与功能
武志强	深圳农业基因组所	细胞器基因组的进化和突变
		TCP5 controls leaf margin development by regulating
余泓漾	深圳大学	the KNOX and BEL-like genes
		BRAHMA-interacting proteins BRIP1 and BRIP2 are core
俞尧光	中山大学	subunits of Arabidopsis SWI/SNF complexes