Transcription factor MePTF1 positively mediates low phosphate starvation response in Cassava
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Summary Phosphorus is an essential macronutrient required for plant growth and development and is a limiting factor threatening agricultural production.

Cassava (Manihot esculenta Crantz) i1s an important root crop to provide major dietary carbohydrates for human in the tropics. In present study, we found low
phosphate conditions resulted in stunted growth of cassava plants, RNA-seq data and gPCR analysis revealed several low-Pi1 induced genes are up-regulated
by low-Pi stress. A bHLH transcription factor, MePT7FI whose expression is upregulated under low-Pi stress. gPCR analysis and GUS staining assay indicates
that MePTF1 mainly express in the xylem tissues of stems, petioles and roots in cassava plants. Overexpression of MePT7F1 enhance tolerance to low-Pi stress
and show higher phosphate content than that of wide type under low-Pi condition. RNA-seq data indicated that expression of genes related to carbon
metabolism and flavonoid biosynthesis were significantly altered in overexpression transgenic plants under low-Pi condition. Moreover, we found MePHR1, an
essential factor regulating Pi starvation response (PSR) in plant can target MePT7F1 and activates its expression. Our results revealed a novel transcription
factor positively regulating low Pi response In cassava, providing a candidate gene for improving crop tolerance to low-Pi stress.

Results

5. Overexpression of MePTFI in cassava enhance
tolerance to low phosphate stress
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1. Low phosphate stress led to stunted growth in cassava
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A. Relative expression of MePTFI in response to low phosphate stress based on RNA-seq data.
B. Relative expression of MePTF1 under different concentration of phosphate.
C. Relative expression of MePTFI1 in response to low-Pi treatment.




