

Sequence analysis and function identification of α-type carbonic anhydrase (CA) in the gametophytes of Saccharina japonica

邮箱: M1242948000@163.com

Jiajian Weng^a, Yanhui Bi^b

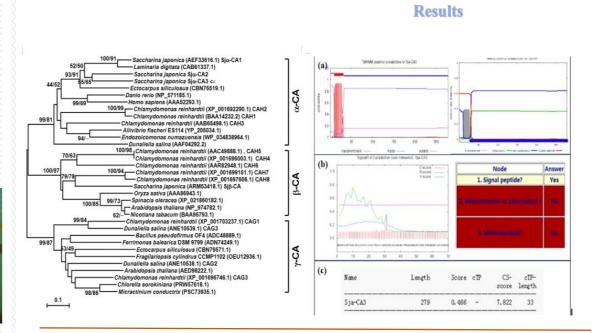
- ^a Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- ^b International Research Center for Marine Biosciences Conferred by Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China

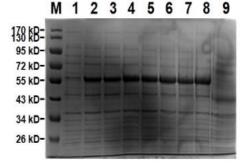
Abstract

The increase of CO₂ content in the atmosphere caused by human activities is the main reason for the intensification of greenhouse effect and ultimately global warming. As the main receiving reservoir of CO₂ emissions on the earth, the ocean has absorbed about 30% of the global CO₂ in the past 200 years, resulting in seawater acidification. Although the solubility of CO₂ in seawater is very low and the diffusion rate is very slow, the photosynthetic efficiency of kelp and other macroalgae is much higher than that of terrestrial plants, mainly because they have an inorganic carbon concentrating mechanism in order to increase the concentration of CO₂ around RubisCO site, thus improving the photosynthetic efficiency of algae. Carbonic anhydrase (CA) is a zinc containing metalloenzyme, which can transform CO₂ and HCO^{3⁻} into each other and help CO₂ to be fixed by photosynthesis. In this paper, we will provide new ideas for the research by synthesizing the current research.

Background

Under the condition that the sea floor is not as light as the land, kelp has the same or higher productivity as the most productive land plants (such as sugar cane). This shows that there is an inorganic carbon concentration mechanism in kelp and other large algae, which can efficiently use dissolved inorganic carbon (DIC) in water. It is known that DIC exists in seawater in the forms of CO₂, HCO³⁻, CO and H₂CO³⁻ CO₂ can enter cells or organelles directly through biological membranes, but the solubility of CO₂ in seawater is low (1%) and the molecular diffusion speed is slow.




Most inorganic carbon exists in the form of HCO^{3 -} (91%). HCO^{3 -} needs to be converted into CO₂ through carbonic anhydrase inside and outside the cells, It is convenient for the utilization of ribulose 1,5-diphosphate carboxylase/oxygenase (RubisCO) in algae cells to improve the photosynthetic performance. At the same time, it can also convert CO₂ into HCO³⁻, forming a Ci pool to store inorganic carbon. Therefore, carbonic anhydrase plays an important role in regulating the photosynthesis of algae

Materials and methods

- 1. Bioinformatics analysis of SjαCA3
- 2. Prokaryotic expression of SjαCA3
- 3. Enzyme activity determination of SjαCA3

M: Prestained Protein Ladder; Lanes 1 to 8: the whole-cell protein of *E. coli* BL21 after 0 h, 1 h, 2 h, 3 h, 4 h, 5 h, 6 h and 7 h inducing with IPTG, respectively; Lanes 9 and 11: the whole-cell protein of *E. coli* BL21; Lane 10: the whole-cell protein of *E. coli* BL21 after 4 h inducing with IPTG.

TMHMM and Phobius software were used to conduct transmembrane analysis on $Sj\alpha CA3$. The results showed that the amino acid at 10 His-32 Val starting from the N-terminal of the protein had a strong hydrophobic transmembrane region. The prediction result of SignalP shows that there is no signal peptide in SjαCA3, but the prediction result of iPSORT shows that there may be a signal peptide with a length of 27 amino acids at the N end ChloroP predicted that it had chloroplast transport peptide composed of 33 amino acids. After removing this region, a mature protein composed of 246 amino acids was obtained, with a relative molecular weight of 27.52 kD and an isoelectric point of 4.61.

Evaluation of CO₂ hydratase activity of Sjoc-CA3 Specific Ovality (mg.

Name	Total vitality/U	Quality/mg	Specific activity(U/mg)	specific activity (U/mg)
Enzymatic group1	0.44		0.88	0.82±0.087
Enzymatic group2	0.43	0.502	0.86	
Enzymatic group3	0.36		0.72	

Evaluation of esterase activity of Sjα-CA3

Name	Total vitality/U	Specific activity (U)	Quality/g	Specific activity (U/g)	Average specific activity (U/g)
Enzymatic group1	0.001341	0.001344	0.000623	2.152	2.157±0.007
Enzymatic group2	0.001342			2.154	
Enzymatic group3	0.001348			2.164	

1.The specific activity of the hydration reaction of SjCA3 is 0.820.087 U/mg protein.

The specific activity of the enzyme is **2.**1570.007 U/g protein. The recombinant Sj α CA3, like other CAs, has not only hydratase activity, but also esterase activity.

Conclusions

- 1. The 10 His~32 Val amino acids starting from the N-terminal have a transmembrane region, a signal peptide with a length of 27 amino acids and a chloroplast transport peptide with a length of 33 amino acids. After removing 33 amino acids from the N-terminal, the molecular weight is about 27.52 kD, which may be a protein existing in the secretion pathway.
- 2. SjaCA3 have the function of hydrating CO₂ to HCO³⁻ and hydrolyzing p-nitrophenyl acetate to p-nitrophenol, which proved that the gene belonged to the CA gene family.

